MANICOUAGAN IMPACT STRUCTURE
Ground Exploration – 2006
Chuck O’Dale & Eric Kujala (1964-2017)
My ground exploration of impact structures continued in August of 2006 when Eric Kujala and I explored the east area of the Manicouagan Impact Crater by canoe.
At this point I want to strongly recommend AGAINST exploring this body of water by canoe. The weather in this area changes within minutes creating dangerous waves in the annular moat (see below), and being in a canoe that is full of rocks in those conditions is not a good idea!
Driving north to the Manicouagan structure I specifically watched the changing rock faces along the road as we entered the area of the 100 kilometre diameter structure. In the inner fracture zone of the structure, some of the rock faces along the highway changed from solid granite faces to fractured walls.
We had a short wind delay here before we made our dash for the main island of the structure that is just visible in the image over 10 km away. At the time this picture was taken, the wind was subsiding with barely a whitecap to be seen and we started our canoe trip across the moat. We got half way across before the wind increased again! Fortunately by that time we were in the lee of the couple of islands visible in the distance. Paddling against the wind took us most of the day to finally reach our main island camp location.
*Autochthonous breccia made of rock fragments cemented by fine-grained material produced in an impact crater larger than 4 kilometers. The mylolisthenite is precisely produced at the interface between the collapsing terrains. They were first identified in 1969 in the Charlevoix impact crater (54 km in diameter; 342 +/-15 millions of years), near Quebec City, Canada.
These photos illustrate the typical breccia outcrops found within the central peak area of the Manicouagan Impact Crater located in Quebec, Canada.
Impact breccias: country geology melted, mixed, crushed and compressed by shock waves at various stages in the cratering process. Even within the brief formation time of an impact crater, it is possible for the multiple generations of breccia to develop and to produce distinctive differences, even though the time between one breccia generation and the next may be measured in seconds or minutes (French 1998).
Impact related pseudotachylite was first recognized at the Vredefort crater in Africa and are common within the Sudbury impact structure.
The colour of the breccia filled rocks around Memory Bay varied from white to copper to dark-mafic.
From location #3 we had a hard uphill slog against the wind to the shock impact melt cliff on the south shore. We eventually made it to the south shore where I walked to the impact melt cliffs shown here at location #4.
Shatter cones at Manicouagan formed over varying shock pressure ranges. A comparison of the shat-ter cones collected along a radial tracsect from 27 to 12 km from the centre of the structure reveal a systematic in-crease in the intensity of shock metamorphism recorded by the quartz and oligoclase indicating an increase in shock pressure from ~5 GPa to ~30 GPa. The most shocked oligoclase sample preserves textures indicative of dynamo-thermal conditions and not just static high pressure (ductile and melt textures). (L. M. Thompson, et al 2016)
The passage of the shock wave through the rock changes the structure of some of the enclosed minerals. IE: change is possible in the feldspar mineral plagioclase. The shock wave can break down the structure of the mineral, changing parts of it into a diapletic glass (glass formed at high-pressure in the solid-state) which is isotropic, or uniform in all directions. This photograph of a thin slice of plagioclase, 0.03 millimetre thick, is seen here in cross-polarised light, with a ‘sensitive tint’ plate. The original plagioclase is coloured yellow and the shock-changed mineral is purple. This sample is from the Manicouagan impact crater. (Courtesy Denis W. Roy & MIAC).
This series of cartoons by Denis W. Roy illustrates the sequence of events that formed the Manicouagan impact crater, Québec, Canada. (Courtesy of MAIC)
1 STOKES LAW: If the particles are falling in the viscous fluid by their own weight due to the Earth’s gravity, then a terminal velocity, also known as the settling velocity, is reached when this frictional force combined with the buoyant force exactly balance the gravitational force. The resulting settling velocity (or terminal velocity) is given by:
Vs = ( 2 (ρp – ρf ) / 9 η ) g R2 where:
-
- Vs is the particles’ settling velocity (m/s) (vertically downwards if ρp > ρf, upwards if ρp < ρf ),
- R is the radius of the spherical object (in metres),
- g is the Earth’s gravitational acceleration (m/s2),
- ρp is the mass density of the particles (kg/m3),
- ρf is the mass density of the fluid (kg/m3), and
- η is the fluid’s viscosity (in [kg m-1 s-1]).
I mentioned earlier that it is not recommended to do this trip by canoe (as we did). The waves on the annular moat and in Memory Bay can reach dangerous heights very quickly. On our final day in the impact structure we were returning to our starting point in Kauashapishkau Bay in a semi-calm wind. But within 20 minutes the wind had increased from under 10 kts to greater than 30 kts! We had to perform an emergency beaching on an island 1/3 of the way across the annular moat.
We made it onto the beach by surfing the waves! It was fortunate that Eric was an experienced white water canoe operator, as we may have otherwise been dumped. Here, we had just started a fire to dry ourselves off. We will be marooned here for 22 hours waiting for the winds to subside. So, what to do until the wind subsides? Why, explore of course!
We eventually made it off the island at 5AM the next morning. Within 15 minutes of waking up during a wind lull, we had struck camp and were paddling for dear life for the eastern shore of the annular moat! We made it back across the reservoir without incident in under three hours. We had a great tail wind. What an adventure!! It was surreal later that morning eating our hot egg and bacon breakfast in a restaurant and realizing that just hours ago we were marooned without any idea of how long it would be until we could get back to the main land.
Back to MANICOUAGAN IMPACT STRUCTURE main page