EPOCH

EPOCH

by: Charles O’Dale

In my articles I use the term crater to define a circular impact depression and the term structure to define an impact crater that is severely altered by erosion.
 

In geochronology, an epoch is a subdivision of the geologic timescale that is longer than an age but shorter than a period. The current epoch is the Holocene Epoch of the Quaternary Period. Rock layers deposited during an epoch are called a series.

50 MILLION YEARS IN THE FUTURE


REFERENCE

The period dichotomy in terrestrial impact crater ages

Richard B. Stothers

Abstract

Impact cratering on the Earth during the past 250 Myr has occurred with either of two apparent periodicities, ∼30 or ∼35 Myr, depending on the set of impact crater ages that is adopted. When the craters are segregated by size and the possible age errors are explicitly taken into account in the analysis, only the longer periodicity survives, and does so only in the case of the largest craters (diameters ≥ 35 km). Smaller craters exhibit no robust periodicity. Despite their relative abundance, the inclusion of data points for the small craters merely degrades, without shifting or destroying, the periodic signal of the largest craters when all of the craters are analysed together. The possible consequences for quasi-periodic Galactic perturbations of the Oort comet cloud are briefly discussed. (Monthly Notices of the Royal Astronomical Society 01 January 2006)

Impact cratering and the Oort Cloud

J. T. Wickramasinghe & W. M. Napier

Abstract

We calculate the expected flux profile of comets into the planetary system from the Oort Cloud arising from Galactic tides and encounters with molecular clouds. We find that both periodic and sporadic bombardment episodes, with amplitudes an order of magnitude above background, occur on characteristic time-scales ∼25–35 Myr. Bombardment episodes occurring preferentially during spiral arm crossings may be responsible both for mass extinctions of life and the transfer of viable microorganisms from the bombarded Earth into the disturbing nebulae. Good agreement is found between the theoretical expectations and the age distribution of large, well-dated terrestrial impact craters of the past 250 Myr. A weak periodicity of ∼36 Myr in the cratering record is consistent with the Sun’s recent passage through the Galactic plane, and implies a central plane density ∼0.15 M pc−3. This leaves little room for a significant dark matter component in the disc. (Monthly Notices of the Royal Astronomical Society 07 May 2008)

Disc dark matter in the Galaxy and potential cycles of extraterrestrial impacts, mass extinctions and geological events

Michael R. Rampino

Abstract

A cycle in the range of 26–30 Myr has been reported in mass extinctions, and terrestrial impact cratering may exhibit a similar cycle of 31 ± 5 Myr. These cycles have been attributed to the Sun’s vertical oscillations through the Galactic disc, estimated to take from ∼30 to 42 Myr between Galactic plane crossings. Near the Galactic mid-plane, the Solar system’s Oort Cloud comets could be perturbed by Galactic tidal forces, and possibly a thin dark matter (DM) disc, which might produce periodic comet showers and extinctions on the Earth. Passage of the Earth through especially dense clumps of DM, composed of Weakly Interacting Massive Particles (WIMPs) in the Galactic plane, could also lead to heating in the core of the planet through capture and subsequent annihilation of DM particles. This new source of periodic heating in the Earth’s interior might explain a similar ∼30 Myr periodicity observed in terrestrial geologic activity, which may also be involved in extinctions. These results suggest that cycles of geological and biological evolution on the Earth may be partly controlled by the rhythms of Galactic dynamics. (Monthly Notices of the Royal Astronomical Society 18 February 2015)

Periodic impact cratering and extinction events over the last 260 million years

Michael R. Rampino  & Ken Caldeira

Abstract

The claims of periodicity in impact cratering and biological extinction events are controversial. A newly revised record of dated impact craters has been analyzed for periodicity, and compared with the record of extinctions over the past 260 Myr. A digital circular spectral analysis of 37 crater ages (ranging in age from 15 to 254 Myr ago) yielded evidence for a significant 25.8 ± 0.6 Myr cycle. Using the same method, we found a significant 27.0 ± 0.7 Myr cycle in the dates of the eight recognized marine extinction events over the same period. The cycles detected in impacts and extinctions have a similar phase. The impact crater dataset shows 11 apparent peaks in the last 260 Myr, at least 5 of which correlate closely with significant extinction peaks. These results suggest that the hypothesis of periodic impacts and extinction events is still viable. (Monthly Notices of the Royal Astronomical Society 20 October 2015)

A tale of clusters: no resolvable periodicity in the terrestrial impact cratering record

Matthias M. M. Meier & Sanna Holm-Alwmark

Abstract

Rampino & Caldeira carry out a circular spectral analysis (CSA) of the terrestrial impact cratering record over the past 260 million years (Ma), and suggest a ∼26 Ma periodicity of impact events. For some of the impacts in that analysis, new accurate and high-precision (‘robust’; 2SE < 2 per cent) 40Ar-39Ar ages have recently been published, resulting in significant age shifts. In a CSA of the updated impact age list, the periodicity is strongly reduced. In a CSA of a list containing only impacts with robust ages, we find no significant periodicity for the last 500 Ma. We show that if we relax the assumption of a fully periodic impact record, assuming it to be a mix of a periodic and a random component instead, we should have found a periodic component if it contributes more than ∼80 per cent of the impacts in the last 260 Ma. The difference between our CSA and the one by Rampino & Caldeira originates in a subset of ‘clustered’ impacts (i.e. with overlapping ages). The ∼26 Ma periodicity seemingly carried by these clusters alone is strongly significant if tested against a random distribution of ages, but this significance disappears if it is tested against a distribution containing (randomly spaced) clusters. The presence of a few impact age clusters (e.g. from asteroid break-up events) in an otherwise random impact record can thus give rise to false periodicity peaks in a CSA. There is currently no evidence for periodicity in the impact record. (Monthly Notices of the Royal Astronomical Society 25 January 2017)